25 March 2019

Sols 2359-2360: Hopping from outcrop to outcrop

Posted by Ryan Anderson

At the start of Sol 2359, Curiosity found herself parked in front of some layered bedrock outcrops (see above image), a rarity in the rubbly landscapes that we’ve explored so far in the clay-bearing unit. We were constrained by power in today’s plan, but managed to make use of every available minute for science.

As part of our routine documentation of the chemical and textural variations in this region, APXS and MAHLI will be making observations of ‘Rutherglen’ to measure composition and detailed texture. ChemCam will also measure the composition of ‘Woodland Bay,’ another bedrock exposure in the workspace. We will also take a couple of Mastcam mosaics – one of the entire workspace to get a better look at the outcrop layering and structure, and to bring color to the tonal variations in the Navcam images. Another Mastcam mosaic will be of ‘Goosander,’ an aeolian bedform that also shows tonal variations, visible at the top of the above image.

We also discussed where to drive next. One tempting option was to drive to a lone float rock (the dark rock near the middle of this image). We wondered what could this be – a meteorite, or a remnant of a higher, eroded unit? Another option was to drive to a nearby area that seems to contain subtle ridges (visible just to the left of the float rock in the same image). Given the prevalence of ridges and similar features in the clay-bearing unit, we decided that it was important to drive to the ridges and set ourselves up for contact science on these features. From our future location, we will also have the opportunity to image that float rock as well as a nearby butte (visible to the right of this image). To facilitate these future observations, we added a post-drive Mastcam workspace mosaic so that we will have color imagery to assist in targeting in the next plan.

Finally, after an approximately 30 meter drive to the small ridges, Curiosity will make observations of the Phobos transit and a Mastcam tau, followed by ChemCam AEGIS observations, which are designed to autonomously shoot ChemCam targets after driving to a new location.

Written by Vivian Sun, Planetary Geologist at NASA’s Jet Propulsion Laboratory