23 April 2017
Sol 1677: Some Murray in hand
Posted by Ryan Anderson
This morning we woke up to fresh images from Curiosity that showed our surroundings after an ~17 m Sunday afternoon drive. I always really enjoy days like this because, even after 1,676 sols and just under 16.1 kilometers of driving, it still thrills me to look at images from unexplored areas of Mars. Immediately after inspecting the data, the science team jumped into planning by debating whether we wanted to spend the morning of Sol 1677 doing remote sensing, or if we wanted to spend the time doing contact science with the arm, all before an early afternoon drive continuing up Mt. Sharp.
A big part of the science team strategy for exploring the Murray formation, the group of rocks that are the lowest and oldest in Mt. Sharp, has been to systematically characterize their changing chemistry and mineralogy. Understanding how these properties vary with elevation gives us insight into changing conditions in the geologic processes that deposited and altered these rocks during burial. Because two of Curiosity’s wheels were perched on rocks during Friday’s planning, we were unable to safely use the arm to measure their chemistry using the APXS (Alpha Particle X-Ray Spectrometer). Since we had the opportunity to make these measurements again today and since the rover wheels were in good contact with the underlying terrain, we easily agreed we would shorten our remote sensing block and instead use the morning time to take advantage of the opportunity for contact science.
The area directly in front of the rover was filled mostly with sand, but we were pleased to find there was a small patch of Murray bedrock that we were able to reach with the arm and that wasn’t filled with white veins. While veins and filled fractures are extremely interesting and frequently targeted for study, their presence in the field of view of the APXS makes it more difficult to understand the changing chemistry of the primary Murray bedrock. We named our contact science target “Casco Bay” and planned both MAHLI and APXS observations of it. We also managed to have enough time in the plan for a little bit of remote sensing, and used that to take ChemCam observations of Casco Bay that will complement the contact science measurements. We also planned to take several Mastcam color images to help us document the geologic context of our surroundings. Environmental science also requested a dust devil movie plan. After our morning science block, we planned another drive to continue our way up Mt. Sharp.