January 9, 2013

Join my SSA special session: When and Why do Earthquake Ruptures Stop?

Posted by Austin Elliott

The clock is ticking on abstract submission for the April 17-19 annual meeting of the Seismological Society of America. Julian Lozos (of Seismogenic, and of course of the PhD program at UC Riverside) and I are convening one of the special sessions, entitled “When and Why Do Earthquake Ruptures Stop? Evaluating Competing Mechanisms of Rupture Termination.”

I highly encourage any of you who think you have answers to that question to submit an abstract for a poster or talk in our session.

The detailed request is below, but I’ll emphasize here that this question is near and dear to my heart as essentially the broad topic of my PhD dissertation research. I can describe that in a future post, but if you want to hear the deets, come to our session!

I should also emphasize that the deadline is seriously rapidly approaching: Thursday, January 10 at 5pm Pacific (UTC -8)!   Eek!

SSA 2013 Special Session:

When and Why do Earthquake Ruptures Stop? Evaluating Competing Mechanisms of Rupture Termination

Summary:

Cessation of coseismic fault rupture has been suggested to result from a variety of mechanisms, ranging from fault-specific static properties to transient, rupture-history-driven dynamic effects. Field and modeling evidence alike implicate static or quasi-static properties such as fault geometry, frictional asperities or regions of creep, and time-dependent poro-elasticity as strong controls on rupture endpoints. However, static, dynamic, and quasi-dynamic numerical models, as well as mounting instrumental and field evidence demonstrate that, as stress evolves over multiple seismic cycles, transient effects may periodically overcome established static barriers, allowing rupture to continue. While much work has been done to investigate the effects of individual mechanisms on rupture cessation, the next step is to merge disparate studies of competing mechanisms in order to understand their relative roles within a given fault system. We invite presentations that summarize findings from numerical models, laboratory tests, observational analyses, and field and paleoseismic investigations that address various mechanisms that inhibit earthquake ruptures. We encourage comparison of these effects with one another, as well as discussion of how to evaluate which properties may dominate rupture through a given fault system, and of how to determine which effects are persistent over multiple earthquake cycles.

Conveners:

Austin Elliott (University of California Davis, [email protected])

Julian Lozos (University of California Riverside, [email protected])

See you in Salt Lake City!