14 January 2019

Fort McMurray homes have normal levels of indoor toxic substances following wildfire, new study reveals

Posted by nbompey

By Liz Do

A row of homes in Fort McMurray located just across from where the wildfire took place in May 2016.
Credit: Arthur Chan

Researchers have examined dust from homes in Fort McMurray in Canada for evidence of harmful toxic substances left in the aftermath of the devastating 2016 wildfire. Their study reveals normal levels of contaminants that are comparable to homes across Canada, and so far, no evidence of long-term health risks from fire-ash exposure in residents’ homes.

In May 2016, a large wildfire in the area forced a mandatory evacuation of more than 80,000 residents in the city and surrounding region, making it the largest recorded wildfire evacuation in Canadian history.

As people slowly gained re-entry to their homes a month later, concerns were raised about residual fire ash or toxic substances in homes that could pose health risks. Smoke and ash can contain a large number of potentially harmful carcinogens, including arsenic, heavy metals and polycyclic aromatic hydrocarbons (PAHs).

In the summer of 2017, University of Toronto Professor Arthur Chan and his research team visited Fort McMurray to find out if there was indeed cause for concern.

“Many people were saying, ‘I’m not sure if it’s safe for my children to come back and live here after this big fire,’” said Chan.

Postdoctoral fellow Lukas Kohl, Meng Meng and Cynthia Jing vacuumed up dust from more than 60 homes in Fort McMurray, looking for evidence of residual fire ash. To ensure representative coverage, the team chose neighborhoods that suffered significant damage — where re-entry was delayed — as well as neighborhoods less affected by the wildfire.

After analyzing dust collected in the living room and bedroom (the largest and most frequented areas in a home) for toxic substances such as PAHs, arsenic and heavy metals, the team reported that the levels, while detectable, were not any higher than in Canadian homes that had not been affected by the fire. Their findings were recently published in Geophysical Research Letters, a journal of the American Geophysical Union.

“That was the surprise — that even after this fire, we actually didn’t see higher levels of contaminants,” said Chan. “The levels we saw were not terribly high. If we compare them to health guidelines — what is considered to be a health risk for soils — the results from samples we collected in the homes were generally lower.”

Fort McMurray residents evacuating along Highway 63 as the fire encroaches on the area.
Credit: Wikimedia Commons

For some chemicals, such as lead, levels were actually higher in Toronto homes than those in Fort McMurray. “Since Fort McMurray is a newer city, a lot of the infrastructure like pipes and paint don’t contain lead,” said Chan.

Although the results surprised Chan’s team, he suspects the reason that levels were normal has to do with residents’ cleaning habits.

“We think people are cleaning quite a bit after the fire,” he said. “A lot of the houses have gotten insurance companies to cover the cost of a cleaning crew. And even for houses that don’t have insurance clean-up, the residents have cleaned quite thoroughly, due to concerns about residuals from the fire.”

His lab will continue to study samples collected from other areas of the home. They’ve also partnered with a pulmonary specialist at Toronto General Hospital, who is currently assessing the lung health of those who participated in his lab’s study.

Chan stresses that there are other types of health concerns that can result from the fire, ranging from mental health of victims to the occupational health of firefighters who battled the blaze. But for this study in particular, he hopes these findings give the Fort McMurray community some peace of mind.  

“I think they should take this as good news. So far, we don’t have any evidence to say that there are any immediate health risks in their homes due to the fire,” Chan said.

— Liz Do is a communications officer in the Faculty of Applied Science & Engineering at the University of Toronto. The post originally appeared as a press release on the University of Toronto website.