December 18, 2020

Is San Quintin Glacier Lake the fastest expanding lake this century in South America?

Posted by Mauri Pelto

Landsat images of San Quintin Glacier from 2001 and 2020 indicate the expansion of both Lake A and Lake B due to glacier retreat. The Lake A basin as defined by the transect at the eastern narrow point, yellow line, has a total area of 41 km2 with the lake surface area now comprising 35.1 km2.

San Quintin is the largest glacier of the Northern Patagonia Icefield (NPI) at 790 km2 in 2001, flowing ~50 km west from the ice divide in the center of the ice cap.  San Quintin Glacier terminated largely on land until 1991 (Davies and Glasser, 2012). The velocity at the terminus has increased from 1987 to 2014 as the glacier has retreated rapidly into the expanding proglacial lake (Mouginot and Rignot, 2015).  As Pelto (2016) noted 19 of the 24 main outlet glaciers of the Northern Patagonia Icefield ended in a lake in 2015, all the lake termini retreated significantly in part because of calving losses leading to lake expansion in all cases. Glasser et al (2016) observed that proglacial and ice-proximal lakes of NPI increased from 112 to 198 km2. Loriaux and Cassasa (2013) reported that the combined area of the multiple San Quintin Glacier lakes expanded the most of any NPI from 1945-2011 increasing by 18 km2. The large evident crevasses/rifts perpendicular to the front indicate the terminus tongue has been partially afloat since at least 2014  Here we examine Landsat images from 1987-2020 to illustrate the changes. NASA’s Earth Observatory has high resolution images indicating the terminus in June 2014 and April 2017

In 1987 it is a piedmont lobe with evident minimal marginal proglacial lake development beginning, with an area in Lake A of  3.2 km2 and Lake B of 2.2 km2.  The main lake, Lake A, in 2001 had expanded to an area of 14 km2, while Lake B had expanded to 6.5 km2. The main lake, Point A, had an area of 23.8 km2 in 2011 (Loriaux and Cassasa, 2013) . Lake B developing on the north side of the glacier, due to a 3500 m retreat, by 2015 had an area of 9.2 km2.  For Lake A the main terminus retreat of  2200 m from 1987-2015 and led to lake expansion to 34.3 km2. The southern terminus at Point C, has a narrow fringing lake and a retreat of 1100 meters from 1987-2015.

A narrow terminus tongue extending from the main terminus had an area of 0.6 km2 and extended to within ~1.5 km of  the Lake A western shore in March 2018.   By November 10, 2018 this narrow tongue had disintegrated.   In February 2020 the area of Lake A is 35.1 km2 and Lake B is 9.7 km2, a combined area of 44.8 km2 vs 20.5 km2 in 2001.  Gourlet et al (2015) examined the thickness across sections of the NPI, weather prevented the survey of the terminus area of San Quintin Glacier, but there results do hint that the bed is below sea level between Lake A and B basins, and they should connect. In the Landsat images of 2001 and 2015 a transect across the narrow point at the east end of Lake A indicates an area of 41 km2 if the entire main terminus tongue collapses. The ~24 km2 lake expansion at the two main terminus locations of San Quintin Glacier from 2001-2020 represent the fastest lake expansion from glacier retreat, is it the fastest overall for South America? Steffen Glacier is another example of rapid retreat and lake expansion. The retreat is much less than at HPS-12, but that is an example of fjord expansion.

Landsat images of San Quintin Glacier from 1987 and 2015 indicate the expansion of both Lake A and Lake B due to glacier retreat as well as retreat at Point C.

San Quintin in  March and November 2018 Landsat images indicating loss of narrow terminus tongue pink dots.