10 October 2014

Friday folds: ploudin trio from Corridor H

You many recall the putative submarine mass transport deposit that Alan Pitts and I found on Corridor H, and that I’ve been back to several times with Dan Doctor of the USGS. Well, last month I was out there again, to GigaPan the site. While I was there, I took portraits of some of the folded and dismembered sandstone bodies (which I dubbed ploudins, as an amalgam between the word pillows –as in “ball and pillow structure”– and the word boudins).

Here are three of the best.

IMG_3494

IMG_3500

IMG_3502

And to get a sense of the context in which these things formed, consider poking around this GigaPan of their source outcrop…

link

…and this GigaPan of the larger road cut in which it is found:

link

Happy Friday!

Comments/Trackbacks (0)>>



9 October 2014

In search of Santorini’s blueschist, part 1: into the Valley of the Shadow of Ash

One afternoon during my stay in Santorini last month, I went for a solo geology hike. I left our hotel in the beach town of Perissa, and walked north toward the prominent mountain where I had reason to suspect I would find marble and blueschist – the subducted remains of the Tethys Ocean basin. I headed towards a prominent cliff which had a karsty-looking hollow in which prominently sat a white church of some sort.

IMG_3588

In the next shot, you can see the church at the upper right, but the focus shifts to the prominent geologic contact to the west (left) of it.

IMG_3589

This is the contact, I inferred between marble (which weathers out more prominently in this exceptionally arid environment), and an underlying body of schist, which would be a valley-former:

IMG_3619

For reasons I’ll reveal later, I think this contact may be a fault.

IMG_3619anno

Here’s a view directly northward into the valley west of the church-cliff mountain.

IMG_3590

There’s a new geologic unit in this shot. In the middle of the valley is a light-colored, stratified, easily weathered rock unit. From a distance, I inferred this to be volcanic ash from the eruption of Santorini’s volcano. Later, I confirmed this by collecting several large blobs of pumice from this unit.

IMG_3590anno

So this is neat – in the most central hollow of this schisty valley, there’s a nice horizontally-layered ash deposit. That means the valley already existed at the time of the eruption, otherwise there would be no topographic basin to catch and hold this ash.

Here’s a Google Earth view of the valley, north of the beach town of Perissa:

mapperissa_unanno

Now for some annotations, to show the trace of the contact between the marble (M) and the schist (S), and the ash deposit (A) in the deepest part of the valley:

mapperissa

I also indicated where the towns are, and the location of that white church in the shadow of the most prominent cliff.

Looking across the valley to the west:

IMG_3617

IMG_3617anno

A final perspective, this looking obliquely northwest into the valley:

IMG_3616

Note the little hollows (“caves”) cut into the lowermost outcrop of the ash.

IMG_3616anno

Okay, so now, can we finally examine the schist itself, in search of the blue variety?

Patience, grasshopper…. Next week.

Comments/Trackbacks (0)>>



8 October 2014

Lunar eclipse images from the past 2 hours

My family and I watched this morning’s lunar eclipse from the deck. It was lovely. A few images…

IMG_4513

IMG_4529

IMG_4539

IMG_4555

Note the airplane track at the bottom of this one:
IMG_4561

IMG_4579

output_4ZG1Bm

I love moments like this – nature acting both predictably and beautifully… and being able to share it with my family.

Comments/Trackbacks (2) >>



6 October 2014

Non-bedding-parallel stylolites in Tonoloway limestones, Corridor H

Often, stylolites (pressure solution seams) are bedding parallel in susceptible sedimentary rocks. They are shaped like “beds of nails,” overall planar, but with pointy bits that poke up and down, perpendicular to that plane.

The stylolites form with an orientation that is overall perpendicular to the maximum principal stress direction, and the little “teeth” parallel to the maximum principal stress direction.

Often stylolites form in sedimentary rocks parallel to bedding (that is, horizontally) because the maximum stress is vertical (due to loading of overlying sedimentary layers).

But sometimes we find stylolites that cut across bedding at some angle, and these are inferred to have formed due to more horizontal (i.e., tectonic) stresses.

Here is an example (cross-sectional view, perspective parallel to the bedding plane) I found last month on Corridor H, West Virginia:

IMG_3521

This is a chunk of Silurian-aged Tonoloway limestone. Closer in, you can see some additional detail of this structure:

IMG_3522

Here’s a view of the bedding plane (“map view”), showing the trace of the stylolite cutting across bedding:

IMG_3523

From a study of in situ examples of stylolites like these, one can infer the maximum principal stress direction (σ1) and thus potentially the direction of tectonic transport. They are subtle things, but in aggregate, a bunch of little stylolites can tell you about regional-scale tectonics.

These rocks were deposited during the Silurian, but obviously the stylolites would have formed well after that, sometime after the carbonate mud was lithified to limestone. Probably they are Alleghanian in age – due to the collision of ancestral Africa with ancestral North America during the late Paleozoic periods called the Pennsylvanian and Permian.

Comments/Trackbacks (6) >>



3 October 2014

Friday fold: En route to Santorini over the Cyclades

Santorini’s a volcanic island. But the giant volcano built itself up over a nucleus of much older material, subducted sediments (now metasedimentary rock). This rock is typical of the Cyclades, the circular-shaped archipelago north of Santorini. As we flew there from Athens, I looked out the plane window in jet-lagged wonder at the scene of dry islands in a placid sea.

Here’s one that I saw:

IMG_3528

I reckon what we see there can count as our Friday fold. Let’s trace out the bedding:

IMG_3528anno

That’s the sort of fold you would not see from the ground – it is so big that it requires either an aerial perspective or a concerted mapping effort to detect it.

I love living in the age of Google Earth. After I got home, I was able to poke around on that fine program and identify the island I had photographed. It’s a peninsula on the southern part of the island of Antiparos. Here’s a Google Earth screenshot for comparison:

gs_island

 

This sort of folding is precisely what we would expect in a metamorphic terrane. However, it’s not the sort of thing we would associate with a volcano. So, we’ll have to keep flying south for that…

Comments/Trackbacks (0)>>



29 September 2014

Charnockite at Swift Run Gap

Over the weekend, I ran a 1-credit field course for NOVA, on the geology of Shenandoah National Park. I was about eight minutes early getting to the meet-up location, so that allowed me to check out a promising new outcrop of rock along the road (route 33, ~100 m west of Swift Run Gap). Here are two photos of it: charnockite (pyroxene-bearing granitoid or meta-granitoid), with weak foliation:

IMG_3800

IMG_3801

This is what my free-time geologizing has been reduced to: squeezed in to a few spare minutes here, a few spare minutes next week. No time for any more than that…

Comments/Trackbacks (2) >>



26 September 2014

Friday fold: passively folded marble

It’s Friday!

Here’s Baxter, last Friday, in Athens, Greece. He’s checking out some folds in the marble that’s everywhere in that city:

IMG_3682

This is a lovely example of passive folding, where all the rock layers being folded have about the same viscosity (low viscosity contrast between layers). No buckling, as a result…

IMG_3681

Enjoy the weekend, hopefully passively!

Comments/Trackbacks (2) >>



23 September 2014

Santorini: where the Hellenic arc meets the Cyclades

Once upon a time, there was an ocean. Its name was Tethys. The Tethys was born in the cozy embrace of Pangea.

tethys

But as Pangea broke up, Tethys felt the squeeze. Subduction began to close it.

As subduction recycled the Tethyan oceanic lithosphere, magma was produced and volcanoes erupted. Seafloor and seafloor sediments were dunked into the mantle, experiencing tremendous pressures but relatively low temperatures.

The Tethys shrank in size, hemmed in on all sides by colliding fragments of the former supercontinent. The modern Mediterranean is the “last gasp” of the Tethys. And it’s getting smaller and smaller over geologic time. The subduction continues. One spot where this is gloriously reflected is the island of Santorini.

aegeanmap

South of Santorini is the Hellenic Trench, where Africa is being subducted beneath Eurasia. This subduction has been going on for a long time (since Pangea’s breakup in the Triassic), and the most amazing thing about Santorini is that it reflects two different aspects of that subduction story, one ancient, one modern.

You see, Santorini sits in the middle of a geographic Venn diagram: it’s where the modern Hellenic volcanic arc overlaps with the ancient subduction complex of the Cyclades Islands.

aegeanmap2

The bedrock of the Cyclades tells the earlier chapter of the story: seafloor and overlying sediments that traveled down a subduction zone into the mantle, only to rise again, transformed, to appear at Earth’s surface. The volcanic arc, of course, is a line of modern volcanoes, erupting lava and pyroclastics produced during more recent subduction. And Santorini has both.

santorini

Whereas most of the island is famous (and justifiably so) for its volcanic features, I was most interested in the green blotches on the map above – the spots where the Cycladic basement rock was exposed: schist and marble that had a tale of subduction to tell…

As fate would have it, my free trip to Greece with the Fugawies had me staying in Perissa, the stretch of rock in the southeastern part of the island, right in the middle of the two biggest exposures of the basement complex.

Next up: I’ll discuss what I found there…

Comments/Trackbacks (7) >>



22 September 2014

Sea arch in pyroclastic deposits, Santorini, Greece

Last week, I did something unusual. I took a mid-semester vacation. My wife and I were in the rather extraordinary position of being gifted with a free trip to Greece, and though the timing was far from ideal for a pair of educators, we could hardly say no.

My wife’s mother became friends with a group of people back in the 1970s, when they were all young and backpacking around Europe. They met one afternoon in Athens near the American Express office, and went on to have a series of rollicking adventures together that bonded them for life. They called themselves the “Fugawies.”

Years later, some of the Fugawies have gone on to achieve considerable financial success, and when two of them were celebrating their wedding anniversary last winter, they decided that the treat they really wanted to enjoy was a reunion with their old friends, in the old places (plus some new ones). They decided to invite everyone for a ten-day trip to Greece, with airfare lodging, ground transport, and meals all on their nickel. Of course, the various Fugawies have grown older and had children, and in two cases, grandchildren. These descendants were considered to be part of the Fugawie fold, and were included in the extraordinarily generous offer.

So thanks to my wife’s mother’s friendship with these benefactors, my wife and son and I found ourselves in Santorini (Thera) and then Athens last week. I was able to see some pretty cool geology while I was there, and I intend to explore it over the course of the next week or two, as blog-composing time permits.

Let’s begin with this:

arch

That’s a sea arch (~3 m tall) composed of pyroclastics from the eruption of Santorini, a massive affair that turned the once-conical island into a shattered hole in the crust. We’ll talk about the details of the eruption later, but for now, it’s probably enough to realize two things about this arch: (1) that the rock it’s made from formed through volcanic violence, piling up during a cataclysmic eruption, and (2) gradual erosion by the limpid waters of the Aegean Sea have carved it into this lovely shape.

Comments/Trackbacks (4) >>



19 September 2014

Friday fold: Miette Group anticline in Banff National Park, Alberta

Here’s an outcrop of Miette Group slate, seen at the intersection of the Icefields Parkway with the Trans-Canada Highway, just north of Lake Louise, Alberta:

miette_zack

There’s a lovely anticline just to the right of Zack, who obligingly provided a sense of scale. Also note how cleavage which is subparallel to bedding on the far left side of the outcrop, becomes perpendicular to bedding along the crest of the anticline…

miette_zack_anno

Happy Friday!

Comments/Trackbacks (0)>>