26 October 2014

Bedding / cleavage relations in the Stephen Formation, Yoho NP

Good afternoon! Here are a few photos, both plain and annotated, showing the relationship between primary sedimentary bedding and tectonic cleavage in the “tectonised Stephen” Formation atop the Cathedral Escarpment (in Yoho National Park), just northeast of the Walcott Quarry where the (thicker, basinward) Stephen Formation hosts the Burgess Shale.





Weathering exploits both these planes of weakness…



Here, the cleavage is more planar at the bottom of the sample, and more curved toward the top – probably due to subsequent folding?




Comments/Trackbacks (4) >>

25 October 2014

GSA and the Biggs Award

The recently-concluded Geological Society of America meeting in Vancouver, British Columbia, was one of my best meetings ever. I gave two talks and a digital poster, supervised three student digital posters and one student group regular poster, attended and contributed to meetings on a variety of subjects, met new colleagues, reunited with old friends, and even attended some stimulating science talks. Plans were hatched, ideas refined, projects discussed.

Tuesday was a big day for me – at lunch that day, I received the Biggs Award for Geoscience Teaching Excellence from the Geoscience Education Division of GSA. I was nominated for this prestigious award by Heather Macdonald of the College of William and Mary and Bob Blodgett of Austin Community College, who appear alongside me in the photo below. Also in the photo is the (now Past) President of the Geoscience Education Division, Elizabeth Heise, of the University of Texas – Brownsville.


Heather and Bob’s citation appears in the current (hot off the presses) issue of In The Trenches (published by the National Association of Geoscience Teachers). If you read it, you’ll see I was in very good company on the awards dais. Their words were so laudatory as to verge on being embarrassing, and I was deeply honored to be seen as worthy of such high praise from such accomplished geoscience educators, from such leaders in our field.

Here’s what I said upon accepting the award:

It’s wonderful to be here today with you, here on Earth. You and I are fortunate to live on a very interesting planet. It’s big enough to have differentiated. This allowed the development of a metallic core, whose circulation powers a magnetic field that protects our atmosphere from erosion by the solar wind. Differentiation also provides for mantle convection, the power source driving plate tectonics. The eruption of volcanoes and gravitational acquisition of comets both yield water, and this water is critical for life. Every critter and microbe needs liquid water, and for 4.5 billion years, our planet’s surface has had the right blend of solar heating and greenhouse gas insulation to keep the water flowing. What fortune! Every move we make, every breathe we take, we rely on geology.

In my job, it is a delight to be surrounded by clever people who are largely unaware of the dynamic geomachinations that sustain them. You and I teach them to read the world. In every process, Earth generates a little clue or two. The cumulative record of these clues is a fantastic saga: from magma ocean to stromatolitic ‘slimeworld’ to Snowball Earth to Cambrian explosion and eventually the evolution of abstract thinking and human intelligence, we’ve come a long way! And we have the rocks to prove it.

You and I are the ones who get the honor of opening the world’s eyes to geoscience. We reintroduce our students to their planet, what it’s made of, how it works, how it sustains them, and how it can kill them. We provide a vital service, a job that is extraordinarily gratifying fun. For each new student, we slip a pair of geology-colored glasses onto their face, and lean back with satisfaction as they stare about in newfound wonder. Their appreciation is our greatest reward.

I’m honored to be recognized with the Biggs Award. I thank Heather MacDonald and Bob Blodgett for making the effort to nominate me. Heather and the faculty at William & Mary nurtured a familial atmosphere that drew me into geology as a very young man.They inspired me, as did many talented writers and artists. I’m grateful to my colleagues at NOVA, Geo2YC, Pearson, and every institution I’ve been lucky enough to be affiliated with. I’m most grateful to my hardworking students, too many to list here, but some of the best are here at this meeting. My wife Lily is a stalwart supporter of my many projects, but she rightfully reminds me that life is short, and work is but one facet of a full life. Sharing an appreciation of nature with our son Baxter is now the main project I want to spend all my time on.

Every person in this room is interested in geoscience education. Future students are lucky to have you to learn from. I hope you are as honored as I am to be doing this job. It is essential work for the sake of our species’ future, and for the sake of feeling at home here on the most fascinating planet in the neighborhood.

Thank you.

This little speech had quite a galvanizing effect. In addition to applause, several people (mostly people from the Geo2YC community) leapt to their feet and whooped out loud. The ovation was at least partly on its feet. It was really cool to see the chord my words had struck with them. Man, what an infusion of adrenaline and good will I felt. It was so nice to have my work validated in this public forum.

Later that evening, my publisher, Pearson, hosted a reception in honor of the award. Though there was a snafu with directions, those who really wanted to attend figured out where it was and made an appearance. It was a fine evening, and led to some heartfelt and heartwarming narratives from my students (six of whom were there) on the positive influence I’d had on their lives. It was humbling and astonishing to hear how significant my actions had been in determining their course through life. I thank all of them for sharing their feelings with me there – it brought tears to my eyes.

Overall, the meeting was one of the best I’ve ever been to, and I look forward eagerly to the next one – in Baltimore a year from now. GSA’s annual meeting is a highlight of my professional year.

Comments/Trackbacks (3) >>

24 October 2014

Friday fold: Three more from the Chancellor Slate

Remember our examination of buckle folding versus passive folding in the Chancellor Slate (cleaved limy mudrock) of eastern British Columbia?

Well, here’s another example:


There’s so much awesomeness going on in that image, it’s hard to know where to start. The prominent black thin layers are buckled in a very boxy, asymmetric way. In places, the layer is discontinuous, suggesting faulting or shortening via pressure solution. Note how the cleavage that emerges from the overlying and underlying more massive units warps and deflects (dominantly to the left) as it crosses the trio of high-contrast thin beds.

From a few feet away, here’s another example of more classic cuspate-lobate folding between units of different strength:


And from a few feet away in the other direction, here’s a bunch of offset thin beds, which at first looks a lot like a series of microfaults, but in fact is pretty clearly pressure solution induced dissolution of some of the (now absent) rock along the prominent pressure solution seams (distributed cleavage or stylolites):


Happy Friday to you!

Comments/Trackbacks (1)>>

17 October 2014

Friday fold: Santorini schist

Happy Friday!

Here’s some folded schistocity in the schist of Santorini’s Cycladean subduction complex:



The blunt crest of the fold in the second photo appears to be a folded marble boudin. Neato!

Comments/Trackbacks (0)>>

16 October 2014

Boudinage in Santorini schist

While on my blueschist quest, I noticed this boudin train exposed in the trail.



I’m not sure what exactly is being boudinaged here – only that it is lighter in color than the schist that surrounds it, as well as finer grained and less foliated (more massive). A tabular mass of fault gouge perhaps?

Comments/Trackbacks (2) >>

15 October 2014

In search of Santorini’s blueschist, part 2: finding fault

As mentioned last week, I took a solo field trip north of Perissa, Santorini, Greece, in search of subducted rocks.

The contact between the two main rock types (marble and schist) was prominent and visible from a great distance (see photos in previous post), but what was the nature of this contact? Did it represent conformable stratigraphy? Was it a fault?


Here’s a closer look at the contact:


In places, both units could be observed to show brittle deformation…



Close ups of brecciation in marble:



This suggested to me that the contact was faulted. It may also, broadly speaking, be stratigraphic, but the deformation I observed along the contact indicated a pronounced history of shearing.

Within the schist, for instance, there were pods of marble, as seen here:


I interpret these as boudins, or perhaps more accurately as asperities of the marble, dismembered by faulting and “tumbled” into the less competent schist below.


Three other examples of this follow, with smaller marble “podlets” entrained in the schist:




This looks to me like tectonic mixing of the two lithologies. Further down, below the contact itself, the schist was more “pure,” with fewer macroscopic marble inclusions. Some of the schist below the contact was grayish, some was greenish, and some was bluish. Here are a couple of exposures I saw early on, lower down the hillside:



Here is an example from the highest point on the hill that I hiked to (i.e. to the contact and no further):


That schist is blue!

Blueschist was what I was after on this excursion, given that it’s a high-pressure, low-temperature sort of metamorphic rock – the kind of thing that could really only form in a subduction zone.


Image redrawn and modified by me from Figure 3 of Bousquet, et al. (2008), which is itself modified from Oberhänsli, et al. (2004), and also from University of British Columbia (1997), which is modified from Yardley (1988).

…And now I had spotted it! Here are a few samples:



As I learned several years ago in Turkey, the degree to which a rock “re-equilibrates” under high-pressure, low-temperature conditions is partly a function of those two physical variables, but also dependent on (a) the exact composition of the protolith and (b) the amount of water present and available to help facilitate chemical reactions (like the production of glaucophane). As a consequence, blueschist and blueschist-grade “greenschist” may co-exist in the same outcrop. Here’s an example of that; compare the hand-sample to the bedrock it rests upon:


I collected a couple of teaching specimens of both the blueschist, and the adjacent marble.

Some of the marble contained chert nodules that weathered out in positive relief:


Also, for the structurally-inclined, here’s a conjugate pair of kink bands (partly ruptured to become faults) disrupting foliation in some of the green schist:



Santorini’s geologic story doesn’t end with these subducted oceanic rocks, however. There is also a volcano there…

Comments/Trackbacks (0)>>

10 October 2014

Friday folds: ploudin trio from Corridor H

You many recall the putative submarine mass transport deposit that Alan Pitts and I found on Corridor H, and that I’ve been back to several times with Dan Doctor of the USGS. Well, last month I was out there again, to GigaPan the site. While I was there, I took portraits of some of the folded and dismembered sandstone bodies (which I dubbed ploudins, as an amalgam between the word pillows –as in “ball and pillow structure”– and the word boudins).

Here are three of the best.




And to get a sense of the context in which these things formed, consider poking around this GigaPan of their source outcrop…


…and this GigaPan of the larger road cut in which it is found:


Happy Friday!

Comments/Trackbacks (0)>>

9 October 2014

In search of Santorini’s blueschist, part 1: into the Valley of the Shadow of Ash

One afternoon during my stay in Santorini last month, I went for a solo geology hike. I left our hotel in the beach town of Perissa, and walked north toward the prominent mountain where I had reason to suspect I would find marble and blueschist – the subducted remains of the Tethys Ocean basin. I headed towards a prominent cliff which had a karsty-looking hollow in which prominently sat a white church of some sort.


In the next shot, you can see the church at the upper right, but the focus shifts to the prominent geologic contact to the west (left) of it.


This is the contact, I inferred between marble (which weathers out more prominently in this exceptionally arid environment), and an underlying body of schist, which would be a valley-former:


For reasons I’ll reveal later, I think this contact may be a fault.


Here’s a view directly northward into the valley west of the church-cliff mountain.


There’s a new geologic unit in this shot. In the middle of the valley is a light-colored, stratified, easily weathered rock unit. From a distance, I inferred this to be volcanic ash from the eruption of Santorini’s volcano. Later, I confirmed this by collecting several large blobs of pumice from this unit.


So this is neat – in the most central hollow of this schisty valley, there’s a nice horizontally-layered ash deposit. That means the valley already existed at the time of the eruption, otherwise there would be no topographic basin to catch and hold this ash.

Here’s a Google Earth view of the valley, north of the beach town of Perissa:


Now for some annotations, to show the trace of the contact between the marble (M) and the schist (S), and the ash deposit (A) in the deepest part of the valley:


I also indicated where the towns are, and the location of that white church in the shadow of the most prominent cliff.

Looking across the valley to the west:



A final perspective, this looking obliquely northwest into the valley:


Note the little hollows (“caves”) cut into the lowermost outcrop of the ash.


Okay, so now, can we finally examine the schist itself, in search of the blue variety?

Patience, grasshopper…. Next week.

Comments/Trackbacks (0)>>

8 October 2014

Lunar eclipse images from the past 2 hours

My family and I watched this morning’s lunar eclipse from the deck. It was lovely. A few images…





Note the airplane track at the bottom of this one:



I love moments like this – nature acting both predictably and beautifully… and being able to share it with my family.

Comments/Trackbacks (2) >>

6 October 2014

Non-bedding-parallel stylolites in Tonoloway limestones, Corridor H

Often, stylolites (pressure solution seams) are bedding parallel in susceptible sedimentary rocks. They are shaped like “beds of nails,” overall planar, but with pointy bits that poke up and down, perpendicular to that plane.

The stylolites form with an orientation that is overall perpendicular to the maximum principal stress direction, and the little “teeth” parallel to the maximum principal stress direction.

Often stylolites form in sedimentary rocks parallel to bedding (that is, horizontally) because the maximum stress is vertical (due to loading of overlying sedimentary layers).

But sometimes we find stylolites that cut across bedding at some angle, and these are inferred to have formed due to more horizontal (i.e., tectonic) stresses.

Here is an example (cross-sectional view, perspective parallel to the bedding plane) I found last month on Corridor H, West Virginia:


This is a chunk of Silurian-aged Tonoloway limestone. Closer in, you can see some additional detail of this structure:


Here’s a view of the bedding plane (“map view”), showing the trace of the stylolite cutting across bedding:


From a study of in situ examples of stylolites like these, one can infer the maximum principal stress direction (σ1) and thus potentially the direction of tectonic transport. They are subtle things, but in aggregate, a bunch of little stylolites can tell you about regional-scale tectonics.

These rocks were deposited during the Silurian, but obviously the stylolites would have formed well after that, sometime after the carbonate mud was lithified to limestone. Probably they are Alleghanian in age – due to the collision of ancestral Africa with ancestral North America during the late Paleozoic periods called the Pennsylvanian and Permian.

Comments/Trackbacks (6) >>